
FURUNO ELECTRIC CO., LTD. All Rights Reserved.

木村 考伸
(古野電気株式会社 技術研究所 第1研究部 知能制御研究室)

2025年12月4日(木)

2025年度第1回公開セミナー
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への応⽤



アジェンダ

◼ 企業紹介

◼ 演題１(データ駆動)：

マルチスケール型GNNに基づく海況モデルによる全球10日間予測

◼ 演題２(非データ駆動)：

物理法則埋め込み型ニューラルネットワークによる船舶流体解析

◼ 今後の予定

◼ まとめ
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古野電気＝？

2

漁業の
見える化

魚群探知機を世界ではじめて実用化！

12/3を「魚探の日」として日本記念日協会にて登録

IEEE
MileStone
(2024)
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センシングから「安全航行」まで
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センサー技術が貢献できること

引用：古野電気「統合報告書2024」

現況センシング センシング予測

https://www.furuno.co.jp/Portals/0/images/csr/report/IR2024_jp_A4.pdf
https://www.furuno.co.jp/Portals/0/images/csr/report/IR2024_jp_A4.pdf
https://www.furuno.co.jp/Portals/0/images/csr/report/IR2024_jp_A4.pdf
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予測→流体の解析

Powered by Gemini3
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⚫(一般的に)CFDの計算コストは高い
（数秒のシミュレーションで数日間の計算も普通も）

⚫精度を担保しながら、計算量の削減の必要

引用：The logical choice of CFD for shipbuilding and 

modifications | Marimecs

計算流体力学(CFD)の課題

https://www.marimecs.com/news/the-logical-choice-of-cfd-for-shipbuilding-and-modifications/
https://www.marimecs.com/news/the-logical-choice-of-cfd-for-shipbuilding-and-modifications/
https://www.marimecs.com/news/the-logical-choice-of-cfd-for-shipbuilding-and-modifications/
https://www.marimecs.com/news/the-logical-choice-of-cfd-for-shipbuilding-and-modifications/
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サロゲート(代理モデル)とは
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教師あり vs 教師なし

①マルチスケール型
GNNに基づく海況モ
デルによる全球10日

間予測

②物理法則埋め込み型
ニューラルネットワークに
よる船舶流体解析



A I技 術 を 活 用 し た海 洋産 業の イノ ベー ショ ン～ O c e a n 5 . 0の実 現に 向け て～

①マルチスケール型GNNに基づく海況モデル
による全球10日間予測

引用：気象庁 | 海洋の健康診断表 日本沿岸海況監視予測システムについて
9

https://www.data.jma.go.jp/kaiyou/data/db/kaikyo/knowledge/move_jpn/index.html
https://www.data.jma.go.jp/kaiyou/data/db/kaikyo/knowledge/move_jpn/index.html
https://www.data.jma.go.jp/kaiyou/data/db/kaikyo/knowledge/move_jpn/index.html
https://www.data.jma.go.jp/kaiyou/data/db/kaikyo/knowledge/move_jpn/index.html


A I技 術 を 活 用 し た海 洋産 業の イノ ベー ショ ン～ O c e a n 5 . 0の実 現に 向け て～

⚫ European Geoscience Union’25
⚫ 人工知能学会’25 (優秀演題賞を受賞)

対外発表

研究体制
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背景：

海況モデルの利⽤には膨大な計算コストが
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⚫ 全球海況予測のサロゲートの可能性の研究
 e.g : Xiong et al., 2023, Aouni et al.,2024, Zhao et al.,2025 

 1/4°解像度→現業予報 (e.g. 1/12°解像度)と比べて限定的

⚫ 全球・高解像度(1/12°)モデルの先行研究：Wang et al.,2024
 CMEMSによる現業予報*と比較し、長期間にわたり良好な結果(RMSE)

AIサロゲートモデル研究

AIを⽤いたサロゲート海況モデルの研究の進展

引用：Wang, X., et al (2024). “XiHe: A Data-Driven Model for Global Ocean Eddy-Resolving 
Forecasting“ (arXiv preprint arXiv:2402.02995). 

*CMEMS:Copernicus Marine Service

(Global Ocean Physics Analysis and Forecast | Copernicus Marine Service) 

https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFORECAST_PHY_001_024/description
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⚫ 全球・高解像度(1/12°)モデルの先行研究：Wang et al.,2024
 格子を⽤いたノード構成 (→陸・沿岸地形への対応)

 時間発展について時間ごとに別モデル (→double penalty effect)

 海況以外との相互作用を考慮せずクローズ

AIサロゲートモデル研究

AIを⽤いたサロゲート海況モデルの研究の進展

引用：Wang, X., et al (2024). “XiHe: A Data-Driven Model for Global Ocean Eddy-Resolving 
Forecasting“ (arXiv preprint arXiv:2402.02995). 

⚫ アーキテクチャー(空間・時間発展)が最適か

⚫ 大気との相互作⽤を考慮する
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1/12°のメッシュを

グラフノードとして

その隣同士の時間発展の
関係性を学ぶ

マルチスケール毎に
現象を学習する
仕組みを適用

本研究のモデル：「グラフ」ニューラルネット
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day0 day1

＜気象＞(10変数)

⚫ 東西風速
⚫ 南北風速
⚫ 降水量
⚫ 気温
⚫ 湿度
⚫ 日射量
⚫ 長波放射
⚫ 顕熱
⚫ 潜熱
⚫ 海面気圧

＜海況＞(5変数)

⚫ 水温*
⚫ 東西流速*
⚫ 南北流速*
⚫ 塩分*
⚫ 海面高度
(*23層/650m)

自己回帰型時間発展モデル

本研究

ベースアーキテクチャー Multi-scale graph neural network

時間発展 単一モデル・自己回帰型モデル

気象 ERA5 （学習）, GFS（推論）

学習データ(期間) 1993 – 2017

学習データ GLORYS12 (Copernicus Marine 

Service)

鉛直層 23 (~650m)
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全ての変数でリードタイム4日
以内の精度は同等以上

※真値は海洋再解析データ

RSME比較
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本研究 Wang+24再解析

予測結果例①：空間分解能

・予測方式の違い
・本研究 ：自己回帰方式 → タイムステップが1日で固定
・Wang＋24：リードタイム毎にモデル構築 → タイムステップ＝リードタイム（10日）

・予測後半になるにつれ、本研究の方がRMSEが悪化することと整合的*
     *RMSEは空間構造の位置ずれに対して厳しい指標であり（Double Penalty Effect）、

平滑化された予測ほど値が良くなりやすい。

本研究の方が、過度な平滑化が抑えられている
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流れ場の時間発展をベースラインと比べ良好に表現

予測結果例②：時間発展

本研究 Wang+24再解析
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GNNを⽤いたデータ駆動型サロゲート海況モデルを構築

⚫ 本研究でのマルチスケール型GNNアーキテクチャーを⽤いた高解像度
(1/12°)モデルを構築し、従来研究との優位性を示した

⚫ 自己回帰モデルにより時間発展を維持しつつ平滑化を抑制できており、
RMSEと整合的

⚫ 今後は大気だけでなく他のデータ型との相互作⽤を考慮したデータ駆動
型の可能性を検討していく。

⚫ 海況モデルを⽤いたアプリケーション開発を促進していく。

演題① まとめ



A I技 術 を 活 用 し た海 洋産 業の イノ ベー ショ ン～ O c e a n 5 . 0の実 現に 向け て～

物理法則埋め込み型ニューラルネットワークに
よる船舶流体解析

20

引用：M. Raissi et al. , “Hidden fluid mechanics: Learning velocity and pressure fields from 

flow visualizations.” Science367,1026-1030(2020).DOI:10.1126/science.aaw4741
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予測→流体の解析

Powered by Gemini3
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引用：令和5年国土交通省海事局「内航カーボン
ニュートラルに向けた今後の施策」

船型による流体解析は
航行＋造船にとって重要

船型による効率運航

https://www.jrtt.go.jp/ship/seminar/asset/231124_mlit_kaiji.pdf
https://www.jrtt.go.jp/ship/seminar/asset/231124_mlit_kaiji.pdf
https://www.jrtt.go.jp/ship/seminar/asset/231124_mlit_kaiji.pdf
https://www.jrtt.go.jp/ship/seminar/asset/231124_mlit_kaiji.pdf
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(<200.0m)

実スケール・実時間の
仮想実験として再現

統合
CAD化

Computational Fluid Dynamics

計算の高速化の必要性

⚫ 数千万メッシュ
⚫ 船が移動しながら波、
潮流、風との相互作⽤

CFD計算
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(船型)形状データがない

データ駆動型適⽤の課題

引用：製造所紹介 - 株式会社新来島サノヤス造船

⚫ 水中での船型が推進性能を決める

⚫ 設計があれば造船できるため、設計図
は門外不出(運航会社にも)

⚫ 業界内(造船所間)でも共有されない

シミュレーションデータがない

⚫ 実スケール船(200m程度)の試験の再現
のためマルチコアCPUでも数週間かかる

⚫ 様々な船型に対するシミュレーションデータを
準備できない

https://www.sanoyas.skdy.co.jp/introduction
https://www.sanoyas.skdy.co.jp/introduction
https://www.sanoyas.skdy.co.jp/introduction
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⚫教師データを前提としない学習を試行

⚫船型など物体形状に依存しない汎用的なモデル

⚫流場を含めた時間発展に対応できるモデル

目指すべき流体解析モデル

本発表の内容
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NS方程式との差(..=0)を
損失関数に

(Physics informed)

PINNによる流体計算
⚫ M. Raissi et al. , “Hidden fluid mechanics: Learning velocity and pressure fields from flow 

visualizations.” Science367,1026-1030(2020).DOI:10.1126/science.aaw4741

𝝆
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇ 𝒖 − −∇𝑝 + 𝜇∇2𝒖 + 𝒇 = 0流体の支配方程式

(ナビエ・ストークス方程式)



PINNへの入力
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⚫ 一般的なPINN（メッシュレス）

座標・時刻を入力し、所望の物理量を得る

⚫ ジオメトリを柔軟に設定可
（どこでもサンプリングできる）
⚫ 複数の環境を同時に対応する

のは難しい

⚫ メッシュありのPINN

物理量の情報を持つメッシュを入力し、単位時刻後のメッシュを得る

⚫ 複数環境の学習が比較的容易
（モデルの再利用性高）
⚫ メッシュ分割コストが高い
（非構造メッシュの場合）

PINN

𝑡 𝑡 + Δ𝑡
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教師あり学習 PINNベースの手法

コンセプト 現象(データ)をそのまま再現するよ
うに学習する

物理法則から導き出される特徴を
AIに学習させる

必要な
もの

・大量の(本物・完成品の)CAD

・大量のCFD結果データ

・(大量の)基本形状
・支配(物理)方程式

原理 存在するデータで 直接学習 物理方程式からデータを生成し
つつ学習(矛盾点を修正するよう
に学習)

競合 ・海技研 (日本)
・Ansys (米国)
・RICOS (日本)

中国(防衛研究所)
ボン大学など

高速化 10-100倍程度 10-100倍程度

PINNによる流体計算
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Finite Volume Method - an overview | ScienceDirect Topics

① AIを使って流体を1ステップ
② 物理方程式との矛盾量を計算
③ 矛盾を修正するようにAIを修正
④ ①に戻る

ニューラルネットワーク図

𝑋 𝑡 + Δt ← 𝐹𝜃 𝑋 𝑡 ：逐次的推論

学習ステップ

学習を繰り返す

制約条件から近隣を決定する 動かしてから修正する

https://www.sciencedirect.com/topics/computer-science/finite-volume-method
https://www.sciencedirect.com/topics/computer-science/finite-volume-method
https://www.sciencedirect.com/topics/computer-science/finite-volume-method
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内容 重み

流体保存則 中
∇ ∙ 𝒖 = 0 

ナビエ・ストークス 中
𝝆

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇ 𝒖 − −∇𝑝 + 𝜇∇2𝒖 + 𝒇 = 0

境界条件(物体) 大 滑りなし/ディリクレ条件
 (𝒖 𝑥, 𝑡 − 𝒖𝑏𝑐 𝑥, 𝑡 = 0 𝑥 ∈ 𝚪) 

境界条件
(inlet/outlet)

-
壁なし(遠方境界)

損失関数設計

⚫以下の損失関数を1ステップごとに計算し、各シナリオにおいて記憶する
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学習における設定

ターゲット物体
(動く)

流入面

流出面

⚫ メッシュ数：
96x96x128

⚫ ニューラルネット：CNN
各格子メッシュに速度ポテン

シャルaおよび圧力pを持つ

⚫ 定常速度：
一定速度を持つため相対
座標として場は一定量の速
度を持つ(一様流れ)

■学習の流れ

学習に
⽤いる
物体
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学習シナリオ例

シナリオ1

シナリオ2シナリオごとの値を
ニューラルネットに入力

シナリオ3

シナリオ

① 登録シナリオから選択
② 1ステップ動かす
③ ニューラルネットに入力
④ 学習
⑤ ①に戻る(必要に応じてリセット)

シナリオ選択
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性能の検証（設定）

⚫ 不動円柱に一様流を当てること
により、流体挙動を観察する

⚫ メッシュ数：
96x96x128

⚫ ニューラルネット：CNN
各格子メッシュに速度ポテン

シャルaおよび圧力pを持つ

⚫ 定常速度：
相対速度一定(一様流れ)

⚫ 境界条件：
-壁あり(#1結果)
-壁なし(#2結果)

実験条件

128

96

96

円柱
（動かない）

z

x

y
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結果#1 (粘性効果の確認)

Re=560 Re=12000

※レイノルズ数(Reynoids Number, Re)：

⚫ ナビエ・ストークス方程式を無次元化すると                        が表出
→物理スケールに依らない物理的指標

⚫ [慣性力]÷[粘性力]。大きくなると慣性力が勝り層流剥離、乱流移
行、非定型渦の生成などが見られる。

𝑹𝒆 =
𝝆𝑼𝑳

𝝁
=

𝑼𝑳

ν
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(A) 提案手法
(B) リファレンス
(従来法・CFD)

差分
(|A - B|)

⚫ 2000ステップ数(収束を確認後)

⚫CFDと同様に物体周りの流体が表現され、後方についても一
定の一致が見られる

結果#2 (リファレンス法(CFD)との比較)

：x方向の速度成分 ：x方向の速度成分
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Wigley船型

ITTCの国際機関で1979年頃に設定され、
数式で表現された理想的な船型。

数式模型 （一般化Wigley模型）

⚫ 定常速度：
相対速度0(一様流れなし)

⚫ 境界条件：
- 壁あり(底面は流れ影響)

実験条件

⚫ メッシュ数：
1024 x128x128
→大規模化

⚫ CNN
上記同様

当該船体の学習ありと、
基本形状のみの学習との差を見る
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結果(船型への適⽤)

⚫船体学習の有り無しで、船体前方流れ(船体周辺の流れ)
に差が見られる

船体前方の流れに
滞留がみられる

船体前方の流れが
深さ方向に流れている

船体なし

船体あり

船体

船体

 適切な(形状)学習が必要

（基本形状のみ）
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PINNを⽤いた非データ駆動型サロゲート(船舶)流体力学モデルを試作

⚫ 本研究でのPINNを⽤いた3次元メッシング型の自己教師あり学習につ
いてシリンダーやWigley船型に対して有効に動作することが確認できた。

⚫ 今後は船舶への応⽤に向けて、高レイノルズ数の対応、二相流への対応
を進める。

⚫ 船型設計や運航に対して精度高い予測データを提供できるか今後検討
していく。

演題②まとめ



⚫ AIを用いた データ駆動型、非データ駆動型のサロゲートモデルを試行し、
技術的な可能性を示した。

⚫ サロゲートモデルは精度を担保しつつ、高速化やデータ入力の柔軟さから
今後ますます活用されていくと考えられる。

⚫ データ(センシング)+AI+物理シミュレーションを共創できるパートナーを
募集中。
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まとめ
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