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Prologue

• Presentation based on 
Nielsen et al. (2024)

• Thanks to my co-authors 
(Kazuma Iwase, Raphaël 
Mounet, Gaute Storhaug)

• Basically, the study is a 
direct continuation of a 
previous study, focused 
entirely on synthetic data
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Agenda

1. Introduction (aim, objectives, motivation)

2. Methodology

3. Results and discussions

4. Conclusions
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Introduction – Schematic illustration (the ship as a wave buoy…)
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Introduction

• Directional wave spectrum is needed for many applications, e.g.,
a. Onboard DSS
b. Ship performance monitoring (safety and fuel consumption analyses)
c. Updating and calibration of wave databases
d. Studies related to weather and climate

• Wave estimation using the ship as a wave buoy is attractive due to 
the analogy to the classical wave buoy…
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Introduction

• Directional wave spectrum is needed for many applications, e.g.,
a. Onboard DSS
b. Ship performance monitoring (safety and fuel consumption analyses)
c. Updating and calibration of wave databases
d. Studies related to weather and climate

• Wave estimation using the ship as a wave buoy is attractive
1. Model-based (transfer function-dependent) approaches
2. Machine learning (ML) approaches entirely relying on measured data

• ML approaches in estimation of the directional spectrum
– Many unknowns; is dimensionality reduction necessary? (some studies 

claim/believe)
– What about forward speed?
– Can we infer about the associated uncertainty?

(different frameworks may produce different results)
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Objectives

1. Make estimation of directional wave spectrum based exclusively 
on machine learning for a ship with forward speed

2. Include an uncertainty measure (“level of trust”) to estimates of 
the sea state (wave spectrum)
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Motivation for using machine learning

• The use of transfer functions offers introduction of the real physics 
(hydrodynamics) of the ship; however,

• the use of transfer functions will typically be associated with 
a significant amount of uncertainty;

 the software / calculation method is always an approximation of 
reality, not to mention the use of a linear theory
 operational conditions (speed, draught, damping, GM, etc.) are not 

always known with a high level of trust, if known at all

 All of this is particularly true when practical (industrial) 
applications, relying on in-service data, are considered 
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Motivation for using machine learning, cont’d

• Concrete observations made (Nielsen et al., 2023); although detached from the 
context

• Nevertheless, for illustrative purposes it serves its meaning…
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Same dataset… but 
different frameworks…

Dependent on 
Transfer functions

Dependent on 
Machine learning

Only wave 
parameters:



Methodology – The “recipe” for what we do

• Three machine learning models are investigated:
1. Method 1: Outputs integral wave parameters
2. Method 2: Outputs a point wave spectrum together with mean and peak wave 

directions
3. Method 3: Outputs the full directional wave spectrum

• Input data is the measured responses (using their corresponding spectra), with ship 
speed as a feature

• Output data (target) is the sea state; as specified for the given method in study (see 
above)
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Methodology: Input data vs. Target data
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Methodology: Parameter settings

• Input (the same for all three methods):
– 3 + 6 spectra
– Discretized at 31 frequencies on the interval 0 – 0.3 Hz
– In total, 9 x 31 + 1 = 280 input parameters

o Output:
Method 3 has 399 target variables

Method 2 has 23 target variables
(21 spectral ordinates + Dp and Dm)

Method 1 has 5 target variables
(Hs, Tz, Tp, Dm, Dp)
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Methodology: Machine learning architectures

• Methods 1 and 2: LightGBM (a tree-based learning algorithm)
– Outputs one parameter, so parallel, independent “streams” are needed
– Note that a directional variable (Dp, Dm) requires two streams as sine and cosine are 

introduced for handling the ambiguity (0 deg and 360 deg is the same)

• Method 3: Artificial Neural Network
– Tensorflow (Python)
– Four layers, activation function is ReLU, with 2,000 nodes in the hidden layers
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Wave spectrum characterisation of Methods 1 and 2

• For consistent comparison of the methods, idealized and / or parameterised spreading 
function are introduced.
– Bretschneider spectrum (ITTC) and cosine-2s function:

NB: For Method 2, only the directional spreading function is needed.
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Uncertainty in estimate: Trust level indication

• The deviation between the three estimates (Methods 1,2,3) in a given scenario, 
represented by sample k, is introduced as a quanti-qualitative measure of the uncertainty

• For the directional spectrum, one has

• IMPORTANT observation: The uncertainty measure is computed without knowledge 
about the ground truth
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Remarks:
• λ represents the method (1, 2, and 3)
• Mathematically, the uncertainty measure (ψ) is the square root of 

the mean of the CoV at the discrete spectral point



Error measures

• Integral wave parameters:

• Wave spectra:

– Point spectrum
(normalised integrated absolute error)

– Directional spectrum
(normalised summed absolute error)
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The hat-notation represents the estimate



In-service data: Ship, route and sensor installations
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Lpp = 232 m (length)
B = 32.2 m (breadth)
T = 10.8 m (design draught)
CB = 0.685 (block coefficient)
DWT = 40,900 t (deadweight)

Data recording
• GPS data (position and speed)

• Wave radar (Wavex by MIROS)

• Motion measurements and strain gauges

• Corresponding transfer functions

• Time series samples with 25 
minutes duration (0.2 s resolution)

• Heave, sway, and pitch 
accelerations

• About two years of data
• Analysis is made with about 5,000 

samples from open-water
• 20% of the data is saved for testing 

(80% used for training)



In-service data: Sea state estimates by wave radar
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 In this study, a wave radar (Wavex by Miros) is the proxy of the 
ground truth



Results and discussions

Considerations to the following

1. Comparison of integral wave parameters (Method 1 vs. Method 2 vs. Method 3); 
which method performs best?

2. Comparison of wave spectra                    (                        --- || --- ); 
which method performs best?

3. Associated uncertainty
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Integral wave parameters – Method 1
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Integral wave parameters – Method 2

22



Integral wave parameters – Method 3
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Integral wave parameters – Which method is the better?
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Answer:
• Not surprisingly, overall, Method 1 performs best

Blue font colour indicates ‘best performance’



Indication of 
corresponding 
quantile

Four arbitrarily selected samples of wave spectra
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Method 1

Method 2 Method 3



Wave spectra – Which method is the better?

Answer
• Surprisingly(!), overall, Method 1 (still) performs very good, if not best
• But…
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Wave spectra – Which method is the better? (cont’d)

27

Answer:
“… Methods 2 and 3 have better performance for the majority of the data, but this finding is 
”disturbed” because of a number of samples with very large errors, as noticed from the insets 
showing the full range of error values.” (Nielsen et al., 2024)

Zoom Zoom



Inconsistent (“erroneous”) wave spectrum in lower sea 
states by wave radar

• Observation of peculiar corner partitions…
• Four examples of Wavex estimates of directional wave spectra

(from time instants separated by several months and different geographical locations)
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Message:
The following observations are not reported in 

Nielsen et al. (2024)



Inconsistent (“erroneous”) wave spectrum in lower sea 
states by wave radar

• Observation of peculiar corner partitions…
• Four examples of Wavex estimates of directional wave spectra

(from time instants separated by several months and different geographical locations)
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Inconsistent (“erroneous”) wave spectrum in lower sea 
states by wave radar, cont’d

• Interestingly, the ML framework of Method 3, in fact, has been able to learn these 
“unphysical” partitions

• That is, in some cases, agreement exists between Method 3 and Wavex but, in other 
cases, an estimate is produced with the corner partitions, albeit they do not occur in the 
Wavex spectrum.
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Uncertainty

• The peculiar behaviour is also seen in the uncertainty measure when shown together 
with the ground true (target) wave parameters

• All data points (app. 5,000 samples) are shown

• Large uncertainty appears to occur only for small values of Hs,target and Tp,target
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Uncertainty, cont’d

• … and when plotted against the error 
measures

• Interesting observation:
Generally, when the uncertainty measure is small, 

say, lower than 0.15, errors are and will be small
NB: The trust level indicator cannot be used the 

other way around
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Final remarks and conclusions

• Three machine learning methods were investigated; overall they all performed acceptable with 
reasonable agreement

• An uncertainty measure was proposed based on the deviation between the case-specific results 
from the three methods

• NB: The proposed idea for uncertainty association is generic

• The uncertainty measure behaved consistently in the sense that little uncertainty was associated 
only to sea state estimates with a small (normalised) error compared to the “ground truth”

• The hypothesis is that it will be known if the estimate is consistent with the ground truth 
although the ground truth itself is always unknown.

• This study would benefit by being replicated using target wave data obtained from another 
source (e.g., ERA5)
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Phase-resolved wave estimation
(reconstruction of encountered wave profile)

35

• Analysis of nonlinear processes requires availability of the encountered 
wave profile (as a time series)

• Applications include, e.g., prediction of large roll angles, fatigue 
accumulation, estimation of nonlinear roll damping
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Methodology: Reconstruction of incident waves
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• Response-based reconstruction method for long-crested waves 
proposed by Takami et al.

• Prolate Spheroidal Wave Functions (PSWF) is used, by which 
reconstruction can be made even from short-time measurements.
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 Schematic illustration



Results: Phase-resolved wave estimation

• Experimental data using tests from 
wave basin at NMRI
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Takami et al. (2022,2023)



Methodology: Roll damping identification

• Linear and nonlinear damping coefficients (ξ1, ξ2, ξ3) and natural frequency (ω0) are 
identified by the Nelder-Mead method so that the nonlinear roll estimator (NRE) 
reproduce the measured roll motion.

• Roll excitation moment Mx is calculated by reconstructed wave + pre-computed (3D 
panel code NMRIW3D-Lite) response amplitude operator. 
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Results: Roll damping identification

• Experimental validation (Takami et al., 2024)
• Five short-crested wave cases (SC1-SC5) were 

investigated

• Comparison against free decay tests (average), 
only linear and quadratic terms considered:
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Future studies (1):
Simultaneous estimation of waves and phase-resolved transfer functions
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Response measurements in waves

P-TRF
(ANN-based)

Parameters
(To be optimized)

Incident wave reconstruction

Pseudo responses in the wave

Bayesian Optimization (BO)

Reconstructed wave based on 
estimated TRFs

Cost function 
by Eq. (11)

Optimized parameters
{ }

P-TRF
(ANN-based)

ω

Pitch

Heave VBM

Estimated TRFs



Future studies (2a):
Spatial Wave Data from a Network of Buoys and Ships

41

• Nowcasting as well as forecasting of waves on a 
large-scale geographical domains using multiple 
observation platforms, including ships

• Assessment of wave energy resources, operational 
windows, ship routing, assimilation (weather + waves), 
…

Mounet et al. (2023)



Future studies (2b):
Spatial Wave Data from a Network of Buoys and Ships
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Questions from the floor ?

Ulrik Dam Nielsen

DTU Construct, Technical University of Denmark

udni@dtu.dk
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Thank you for your attention


