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ARTICLE INFO ABSTRACT

* Thanks to my co-authors - B e e
(Kazuma lwase, Raphaé
Mounet, Gaute Storhaug)

Mamiad by rapme

Mac hine kearning and the wave direction, while Method 3 gives the directional wave spectrum in non-paramedric form. The

assescment is made using full-scale data from an in-service container thip in cross Adantic service. Training

and testing of the methods are made wing dats from 3 wave radar, and the three methods perform well. An

uncerminty mesmre, equivalenty, 3 orust lovel indicator, based on the varisgon henween the post procesed

ouputs of the methads is proposed, and this falitates delErmIRAGOn of esBmates with small ervors; withow
knswing ghe pround outh

Dhrecticmal mave e ct
Uncertamty
Trust boe incdicasor

1. Introduction 2018; Brodtk Nielsen, 2022; Ren et al, .
consider ships withaut forward speed while (1sck

The measuring of wave spectra and sea stale parmeten serves &

vast number of engineering mnd scientific fields; ¢ g., shipping, offshore 4 Stredulinksy, 2012 Mk &
° B H II h H wind energy, physcal oceanography, wave energy converian, ocean 3 Duz, 2019; Duz et al, 2019; Kawa else "
aslca y, e S u y IS a modelling, weather forecmsting and climate research, to mention st 2020 f et ., 2022 Takae , 2022, 2023) consider
8 few (Nicken et al, 202%). The memured wave specrum may have  ships with forward speed; emphasising that all existing studies are not

Nielsen et al. (2024)

direct continuation of a
previous study, focused
entirely on synthetic data

a direct use, sy, in predicting ship performance and safety levels of
a specific ship sailing on & given route, and for producing “weather
windows” related to critical 1ift operations in wind farm installation
processes. Or, the measured spectrum may be used indirecdy, for
instance, to calibrate the outcome of a spectral wave model, and for
asesment of mechanisms of surface water mizing and air-sea fhaes
for understanding weather and climate changes.

Among ofher cbservation platforms, wave buoys are used to mes-
sure waves in the oceans. As an alternative 10 wave buoys, measured
ship responses can be analysed using the analogy between a buoy
and a ship. Thus, ships can also act as “wave meters”, offering an
estimate — in real-time — of the sea state exactly at the ship's position,
and refering to the techaology by the ‘wave buoy analogy’ (WBA)
There is a wide and increasing literature about this iechnology, with
studies for both dynamically positioned and advancing ships, Le. ships
with 2ero and nonzero forward speeds, respectively, where (Tar
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listed. Accounting for all inherent complexities (e.g, forwand speed,
detailed hull grometry, size-induced low-pass fil ering effect) compared
10 purpose-built wave buoys, overall, ship-based wave estimation using
the WHA is not a competitor but rather a supplement; with real-
time spatiodemporal estimates not offered by wave buoys or other
observation platforms such @ remote snsing and third generation
wave madcls

Conceptually, the WBA is typically formulaired using a model-based
framework or using a Machine Leaming (ML) famework The former
relies fundamentally on availability of ship (waveto-response) transfer
functions. Machine leaming frameworls, on the other hand, avoid
the use of warsfer functions m wave estimation capabilities inswad
are learned through training on big datasets of measured (historical)
data consisting of ship responses and corresponding sca state informa-
tion. Each framework has pros and cons, and, ultimately, it could be
meaningful © think in directions of a combination through a hybrid

15 October 2024
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Wave Buoy Analogy (WBA)

Introduction — Schematic illustration (i ship as a wave buoy...)

“Unknown” process (= waves)

b > g

Vessel of any type with motion
sensor (accelerometers)

Response
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(transform to
freq. domain)
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Sea state (Wave spectrum) o — c
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- Al = Machine Learning
- Hybrid method




=
—
—

i

Introduction

 Directional wave spectrum is needed for many applications, e.g.,
a. Onboard DSS
b. Ship performance monitoring (safety and fuel consumption analyses)
c. Updating and calibration of wave databases
d. Studies related to weather and climate

« Wave estimation using the ship as a wave buoy is attractive due to
the analogy to the classical wave buoy...
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The potential...

aADM Bul|ips sp sdiys jo



=
—
=

i

Introduction

 Directional wave spectrum is needed for many applications, e.g.,

a. Onboard DSS

b. Ship performance monitoring (safety and fuel consumption analyses)
c. Updating and calibration of wave databases

d. Studies related to weather and climate

* Wave estimation using the ship as a wave buoy is attractive

2. Machine learning (ML) approaches entirely relying on measured data

ML approaches in estimation of the directional spectrum

— Many unknowns; is dimensionality reduction necessary? (some studies
claim/believe)

— What about forward speed?
— Can we infer about the associated uncertainty?
(different frameworks may produce different results)
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Objectives

1.

2.

Make estimation of directional wave spectrum based exclusively
on machine learning for a ship with forward speed

Include an uncertainty measure (“level of trust”) to estimates of
the sea state (wave spectrum)
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Motivation for using machine learning

DEEP | MACHINE | ARTIFICIAL

» The use of transfer functions offers introduction of the real physics
(hydrodynamics) of the ship; however,

* the use of transfer functions will typically be associated with
a significant amount of uncertainty;

% the software / calculation method is always an approximation of
reality, not to mention the use of a linear theory

+ operational conditions (speed, draught, damping, GM, etc.) are not
always known with a high level of trust, if known at all

s All of this is particularly true when practical (industrial)
applications, relying on in-service data, are considered
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- Motivation for using machine learning, cont'd
» Concrete observations made (Nielsen et al., 2023); although detached from the
context
* Nevertheless, for illustrative purposes it serves its meaning...
On|y wave 12 —— / S.ame dataset... but )
parameters: of | different frameworks...

3 / \ # — .
=, s |||
H & T
E N :‘.:-:'.
nE Dependent on Dependent on |
BE : Transfer functions Machine learning ..*
0 2 4 6 8 10 12 0.0 2.5 5.0 7.5 10.0 125
WBA Hs [m] H, [m]

L RMSE =5.29s

16
D 240 ; =
b= a2
3 -
o 180 g
=
g s e
g 120:“
6o 4
5
o M iy 0 — -
0 60 120 180 240 300 360 0 4 8 12 16 20 100 o o0 50 75 100 125 150 175

7 [deg) s]
WBA D, [deg] WBAT, [s] I 7, i
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Methodology — The “recipe” for what we do

* Three machine learning models are investigated:
1. Method 1: Outputs integral wave parameters
2. Method 2: Outputs a point wave spectrum together with mean and peak wave
directions
3. Method 3: Outputs the full directional wave spectrum

 Input data is the measured responses (using their corresponding spectra), with ship
speed as a feature

» Output data (target) is the sea state; as specified for the given method in study (see
above)
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ethodology: Input data vs. larget adata
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Methodology: Parameter settings

* Input (the same for all three methods):
— 3 + 6 spectra ‘ \
— Discretized at 31 frequencies on the interval 0 — 0.3 Hz \'
— In total, 9 x 31 + 1 = 280 input parameters

o Output: E171 s El,lg
» Method 3 has 399 target variables

L 27(0.030 - 1.12°" 1) rad/s , ¢ = 1: 21
» Method 2 has 23 target variables
(21 spectral ordinates + D, and D) v = (0°:20° : 360°)
> Method 1 has 5 target variables Né“’ .;"" »
(Hs, TZ’ Tps Dmi Dp) § j B _/-{f ‘\.\--____--‘---'

Wave freq. [Hz]
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Methodology: Machine learning architectures

* Methods 1 and 2: LightGBM (a tree-based learning algorithm)
— Outputs one parameter, so parallel, independent “streams” are needed

— Note that a directional variable (D,, D,,) requires two streams as sine and cosine are
introduced for handling the ambiguity (0 deg and 360 deg is the same)

* Method 3: Artificial Neural Network
— Tensorflow (Python)
— Four layers, activation function is ReLU, with 2,000 nodes in the hidden layers
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Wave spectrum characterisation of Methods 1 and 2

» For consistent comparison of the methods, idealized and / or parameterised spreading
function are introduced.

— Bretschneider spectrum (ITTC) and cosine-2s function:
A A .
Sp(w) = 5 €XD —B/w"] , with

A= (21)4 . B—- (2—“)4 ) = Al (7). At - 2T s )

T ar \ T — T\

E(w,v) = S5(w)e(v’)

*— JR—
V=1 Dp

NB: For Method 2, only the directional spreading function is needed.
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Uncertainty in estimate: Trust level indication
» The deviation between the three estimates (Methods 1,2,3) in a given scenario,
represented by sample kK, is introduced as a quanti-qualitative measure of the uncertainty
» For the directional spectrum, one has
) N 1/2
- 2
(NH > (Bt Ekw») -
X(w,v)(k) = — — Elwy) .y —
(8 Fo 0 = i, 2 N
Ny I
R ks:
Ek(w 1/ NA ZEkA w, 1/) emarks

* Arepresents the method (1, 2, and 3)

+ Mathematically, the uncertainty measure (¢) is the square root of
the mean of the CoV at the discrete spectral point

 IMPORTANT observation: The uncertainty measure is computed without knowledge
about the ground truth
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Error measures

The hat-notation represents the estimate
* Integral wave parameters:

ey(k) = |0k — yrl/yn ey(k) = min{|J — ykl, (360° — g — yxl)}/180°
Y= {HSvaa T.} Y= {DmaDp}

« Wave spectra:

— Point spectrum NIAE(k) = b / ‘Fk(w) - Fk(W)‘dw
(normalised integrated absolute error) mo.k Jo
— Directional spectrum 2m 3
NSAEU‘C) = |Ek(wm v ) - Ek(ww UL)|
(normalised summed absolute error) TPH.SQ-,!@ Z,: ; ' ;
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In-service data: Ship, route and sensor installations

Data recording
« GPS data (position and speed)
« Wave radar (Wavex by MIROS)

* Motion measurements

Lo =232 m (length)
B =32.2 m (breadth)
T =10.8 m (design draught)

CB = 0,685 (block coefficient) o m - Time series samples with 25
- | % o il il [T MN " P
DWT = 40,500t (deadweight) E M' ?‘I\W "“W )’ ,’ ; WM' !I““(“ A W minutes duration (0.2 s resolution)
"o 500 1000 1500 ¢ Heave, sway, and pitch
05 accelerations
) J f'*w WWM W’M{‘ﬂ!ﬁ’wM*IW&] ﬁlw i « About two years of data
3 0.5 » Analysis is made with about 5,000
= 0 500 1000 1500
- 1 samples from open-water
Plichacc
2, ,% i ikl ”‘MM! I' h' i 1 A Jil  + 20% of the data is saved for testing
= [ “ ‘ | " U m l I (80% used for training)
60°W 45°W 30°wW 15°W - ° 0 1 000 1500
Longitude Time [s]
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In-service data: Sea state estimates by wave radar

" |n this study, a wave radar (Wavex by Miros) is the proxy of the
ground truth

[EH, ]
T, s | |

e ST

+ Wave Motion modulates radar Doppler
* Orbital wave velocity is extracted
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Results and discussions

Considerations to the following

1. Comparison of integral wave parameters (Method 1 vs. Method 2 vs. Method 3);
which method performs best?

2. Comparison of wave spectra ( -~ || --- );
which method performs best?

3. Associated uncertainty
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Integral wave parameters — Method 1
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Integral wave parameters — Method 2
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Integral wave parameters —
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Integral wave parameters — Which method is the better?

Parameter Method 1  Method 2 Method 3 Parameter Method 1 Method 2 Method 3
Mean 0.25 0.26 0.32 Mean 0.125 0.125 0.124
Std 0.55 0.58 0.62 Std 0.149 0.149 0.204
I Q95 0.98 1.06 1.45 D Q95 0.405 0.405 0.655
* Q75 0.21 0.20 0.25 P Q75 0.150 0.150 0.107
Q50 0.11 0.11 0.11 Q50 0.081 0.081 0.043
Q25 0.05 0.05 0.05 Q25 0.035 0.035 0.016
Mean 0.060 0.078 0.101 Mean 0.086 0.086 0.118
Std 0.086 0.156 0.209 Std 0.112 0.112 0.178
e Q95 0.190 0.274 0.540 D Q95 0.265 0.265 0.543
PoQrs 0.070 0.079 0.073 ™QTh 0.105 0.105 0.121
Q50 0.035 0.038 0.036 Q50 0.052 0.052 0.050
Q25 0.016 0.015 0.017 Q25 0.024 0.024 0.021
Mean 0.033 0.039 0.051 Blue font colour indicates ‘best performance’
Std 0.028 0.039 0.080
T, Q95 0.088 0.109 0.248 Answer:
Q75 0.046 0.054 0.071 . -
Q50 0.026 0.098 0.036 Not surprisingly, overall, Method 1 performs best
Q25 0.013 0.012 0.017




NSAE = 9.3 (*Q50)

(a) Target (Hs = 5.1m). Method 1 (Hs = 6.0m).
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(a) Target (Hs = 4.6m).

NSAE = 10.2 (*Q75)
Method 2 (Hs = 6.1m).

NSAE = 14.0 (*Q95)
Method 3 (Hs =6.8m).

Date-time: 15-Jan-2009 21:30:00

60
f “\ Target
N M1: NIAE = 0.440 (*Q75)
— 1. wasssnes M2: NIAE = 0.441 (*Q75)
& 40 g = = M3 NIAE = 0.784 ("Q95) | -
£
P
=
2
3 20

0 0.05 01 0.15 02 0.25 03
Frequency [Hz]

(c)

Density [m2 s]

NSAE = 10.8 (*Q75)

NSAE = 10.9 (*Q75)

(b) Method 1 (H, = 4.1m).

NSAE = 3.8 (*Q25)

Method 2 (Hs = 3.8m).  (d) Method 3 (Hs = 4.6m).
Date-time: 03-Nov-2007 01:00:00
15 T T T T
N m— Target
M1: NIAE = 0.221 (*Q25)
ssmsssns M2: NIAE = 0.295 (*Q75)
10 = = =M3: NIAE = 0.116 ("25) |
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Y | | i
0 0.05 01 0.15 0.2 025 03

Frequency [Hz]

N 03

(a) Target (Hs = 4.1m).

NSAE = 5.3 (*Q25)
(c) Method 2 (Hs = 4.1m).

20

N 03

NSAE = 5.3 (*Q25)
(b) Method 1 (Hs = 4.2m).

NSAE = 5.4 (*Q50)
(d) Method 3 (Hs = 4.2m).

Date-time: 07-Apr-2008 23:30:00

Density [m?s)
= o
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o
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Four arbitrarily selected samples of wave spectra

N 03

(a) Target (Hs = 3.4m).

NSAE = 11.8 (*Q75)
(c) Method 2 (H = 3.5m).

NSAE = 11.6 (*QT5)
(b) Method 1 (H, = 3.3m).

NSAE = 7.6 (*Q50)
(d) Method 3 (Hs = 3.1m).

Date-time: 01-Nov-2007 22:30:00
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— T argEL
8 M1 NIAE = 0.241 ("Q25) | |
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Wave spectra — Which method is the better?

NIAE

NSAE

Method 1  Method 2 Method 3

Method 1  Method 2 Method 3

Mean 0.96 0.97 1.18 16.7 18.2 21.7
Std 3.67 3.92 3.63 42.6 47.6 53.2
Q95 2.90 3.24 5.03 39.1 44.9 90.5
Q75 0.53 0.47 0.64 13.2 13.7 13.7
Q50 0.35 0.27 0.30 9.8 9.7 7.8
Q25 0.25 0.17 0.17 7.6 7.3 5.3
Answer

» Surprisingly(!), overall, Method 1 (still) performs very good, if not best

e But...
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No. samples

Wave spectra — Which method is the better? (cont’d)

65

75

[ Method 1 [ |Method 1

I Method 2 7 [ Method 2
60 [ IMethod 3 | - 52 Il [ IMethod 3 |
3
45 | 239+
4 = 15
W]
B3 @ 3
30+ s o 26 gto
; < 3
g g °
15 | 13 ¢ Z% ) ]
- L __0_0_2@ _400_ EOO_ 820_
I ~ NSAE I
'_g _____________________ | Ij _____________________ |
0 0.4 0.8 12 1.6 2 0 10 20 30 40 50
NIAE NSAE
Answer:

“... Methods 2 and 3 have better performance for the majority of the data, but this finding is
“disturbed” because of a number of samples with very large errors, as noticed from the insets
showing the full range of error values.” (Nielsen et al., 2024)

p

7
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Inconsistent (“erroneous’”) wave spectrum in lower sea
states by wave radar

i

» Observation of peculiar corner partitions...
» Four examples of Wavex estimates of directional wave spectra
(from time instants separated by several months and different geographical locations)
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Inconsistent (“erroneous’”) wave spectrum in lower sea
states by wave radar

i

» Observation of peculiar corner partitions...
» Four examples of Wavex estimates of directional wave spectra
(from time instants separated by several months and different geographical locations)

(05-Nov-2007 11:00) (31-May-2008 01:00) (22-Aug-2008 19:00) (20-Mar-2009 08:00)
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Inconsistent (“erroneous’”) wave spectrum in lower sea
states by wave radar, cont'd

i

* Interestingly, the ML framework of Method 3, in fact, has been able to learn these
“‘unphysical” partitions

* That is, in some cases, agreement exists between Method 3 and Wavex but, in other
cases, an estimate is produced with the corner partitions, albeit they do not occur in the
Wavex spectrum.

Method 3: Estim. spectrum True spectrum Method 3: Estim. spectrum True spectrum
N 03 N 03 N 03 N 03

D, o5, = 332° (compass orientation’) D, e = 297° (compass orientation") D, . = 120° (compass orientation’) D, 1. = 354° (compass orientation’)
D, et =272°( --) D, e =301°( --) D, 00 =139°( --) D, e = 336°( -~ )
Hs.est =193m Hs.true =204m Hs.esl =251m Hs‘m’e =063 m

* Ship sails at course 240 deg * Ship sails at course 265 deg
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Uncertainty

* The peculiar behaviour is also seen in the uncertainty measure when shown together
with the ground true (target) wave parameters

« All data points (app. 5,000 samples) are shown

» Large uncertainty appears to occur only for small values of Hs,target and Tp,target

18 x 1 . .

H
15 s m]

N
N

Target value

o w (o)) (o]
—

Uncertainty
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Uncertainty, cont'd

« ... and when plotted against the error
measures

* Interesting observation:
» Generally, when the uncertainty measure is small,

say, lower than 0.15, errors are and will be small 0 0.2 0.4 0.6 0.8 1

» NB: The trust level indicator cannot be used the Uncertainty v
other way around

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Uncertainty Uncertainty
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Final remarks and conclusions

* Three machine learning methods were investigated; overall they all performed acceptable with
reasonable agreement

* An uncertainty measure was proposed based on the deviation between the case-specific results
from the three methods

* NB: The proposed idea for uncertainty association is generic

* The uncertainty measure behaved consistently in the sense that little uncertainty was associated
only to sea state estimates with a small (normalised) error compared to the “ground truth”

* The hypothesis is that it will be known if the estimate is consistent with the ground truth
although the ground truth itself is always unknown.

 This study would benefit by being replicated using target wave data obtained from another
source (e.g., ERAS)
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Phase-resolved wave estimation
(reconstruction of encountered wave profile)

» Analysis of nonlinear processes requires availability of the encountered
wave profile (as a time series)

 Applications include, e.g., prediction of large roll angles, fatigue
accumulation, estimation of nonlinear roll damping

(o)

----- TRUE —Reconstructed

Wave elevation [m]

0 100 200 300 400 500 Time [s] 600
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Methodology: Reconstruction of incident waves

« Response-based reconstruction method for long-crested waves
proposed by Takami et al.

- Prolate Spheroidal Wave Functions (PSWF) is used, by which
reconstruction can be made even from shAort-time measurements.

— e E—— E——— T S S S S S S S S S S S S S SSa S S Saaas S S S S S S S S— S—

," \ - —~ A M\ N\ . .
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Takami et al. (2022,2023)
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Results: Phase-resolved wave estimation

» Experimental data using tests from
wave basin at NMRI

—Incident wave (EXP.) —Case B (all responses) Case B (k=3) —Case B (k=4)
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Methodology: Roll damping identification

+ Linear and nonlinear damping coefficients (¢,, &, £;) and natural frequency (w,) are
identified by the Nelder-Mead method so that the nonlinear roll estimator (NRE)
reproduce the measured roll motion.

b, (1) ==2Ew,, (1)=& 6. (1), (1)- £ 2 (f)3 _gGZr(?e(f))JrM}(z)

* Roll excitation moment M, is calculated by reconstructed wave + pre- computecf
panel code NMRIW3D- the) response amplitude operator.

Response Measurements

Heave, pitch, swayl Roll
Root-mean- Minimize RMSE by
Wave reconstruction squared error Nelder-Mead
N (RMSE)
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Results: Roll damping identification

b annd
L and
>
2 = Measured (SC1)
. . . . = Tri-modal with identified parameters (150, 180, 210 deg)
» Experimental validation (Takami et al., 2024) g o
» Five short-crested wave cases (SC1-SC5) were g
investigated =
70.:»300 -200 -100 0 100 200 Timemsou
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« Comparison against free decay tests (average), A Ty m
only linear and quadratic terms considered: g0
<01
& & o RMSE OR’ Slin -0.2
-300 -200 -100 0 100 200 Tmle(s)soo
5C1 0.018 00001 0447rads  0540rad  0.0l6rads  0.018
0.2
SC2 0.028 0002 0447rads  0.637rad  0.0l6rads  0.028 _ et 50 50 00
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Average of SC~SC5 0.017 0.249  0.446rad/s - - 0.025 02
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200 Time (s)
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Future studies (1):
Simultaneous estimation of waves and phase-resolved transfer functions

i

Parameters
(To be optimized) Response measurements in waves
P-TRF
(ANN-based)
Incident wave reconstruction X

/\/\/\/ Reconstructed wave based on\

_ ) estimated TRFs

| . /\/\/\/ )

(Pseudo responses in the wave

—> V 3 e Estimated TRFs I

Cost function J

by Eq. (11)
N

Bayesian Optimization (BO)
Optimized parameters P-TRF
CARAN N VAN (ANN-bascd)

Pitch

o
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Future studies (2a):
Spatial Wave Data from a Network of Buoys and Ships

Nowcasting as well as forecasting of waves on a
large-scale geographical domains using multiple
observation platforms, including ships

Assessment of wave energy resources, operational
windows, ship routing, assimilation (weather + waves),

(a) Area of Study: Cornwall Water

. @ £7
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56°N ,
A
54°N ‘} 'sr
a9 4
éé}' b <
Area pf study ﬁw
50°N |---r29X348 >
grid points
15°W 11°W 7°W W 1°E

Mounet et al. (2023)
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RENEWABLE OCEAN ENERGY -
These devices turn the energy from mnvirlg water and wind into electricity. ’..""D
Underwater power cables carry the electricity to shore, where our homes, f

schools, and businesses can use it.

(b) Buoys in the Area of Study

Buoy4:

Perranporth
Buoy3 / Vessel:
WaveHub \

Buoy2:
Looe Bay

"'Buoyl: y
Penzance /

Buoys5:
FabTest

Buoy6:
Porthleven
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-y Fut tudies (2b):
e uture studies (2b):
L] (]
Spatial Wave Data from a Network of Buoys and Ships
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Thank you for your attention

Questions from the floor ?

Ulrik Dam Nielsen
DTU Construct, Technical University of Denmark
udni@dtu.dk




