

2023年11月8日

Deep Learningによる海上風の高解像度化 (一般財団法人日本気象協会における インターンシップの成果報告)

東京海洋大学 海運ロジスティクス専攻 卓越大学院プログラム M1 岩瀬一馬

- i. インターンシップの概要
- ii. Deep Learningによる海上風の時空間方向への高解像度化

i. インターンシップの概要

- 6月1日~8月29日の3カ月間
- ・ 週2から3日ほどのリモートワーク中心での業務
- 2週間に1回の打合せ
- ・ 業務計画の発表や最終報告を社員の方々に向けて実施
- 与えられたプロジェクトに対して、自由にPythonで実装
- 論文等を調査し、Deep Learningモデルを実装

2023年8月

ii. Deep Learningによる海上風の時空間方向への高解像度化

東京海洋大学 卓越大学院プログラム 岩瀬一馬

- 1. プロジェクトの目的
- 2. 先行研究と実施方針
- 3. データについて
- 4. 機械学習のフロー
- 5. 実験
- 6. 実験結果
- 7. 結論と課題

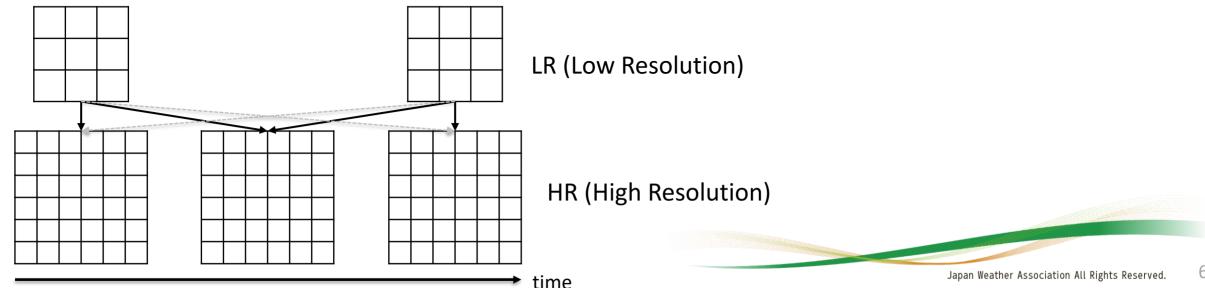
1. プロジェクトの目的

1.プロジェクトの目的

t2

t1

- 海上風を時空間方向に高解像度化し、精度を高めることを目的とする
- 具体的には,1時間間隔のデータを30分間隔に,0.1度×0.125度格子を0.020度×0.025 度格子にする(空間方向に5倍の高解像度化)
- 対象地域は,日本の主要な内湾(陸奥湾,東京湾,富山湾,伊勢湾,大阪湾,瀬戸内海,関 門海峡.有明海.鹿児島湾)

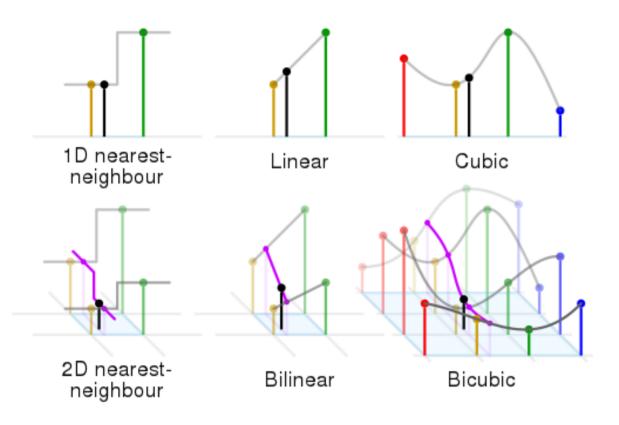


2. 先行研究と実施方針

2. 先行研究と実施方針

- 深層学習による降雨予測の時空間方向へのダウンスケーリング手法の開発(日本気 象協会)[1]では,3DCNNを使用したモデルを用いて,降雨の時空間ダウンスケーリング を実施した
- WiSoSuper [2]では,風速風向の空間方向の高解像度化を複数の最新モデルで実施.
 その中から,BaselineとしてBicubic,精度の良かったEDSR [3]を本実験に採用した
- 本実験ではPythonを使用する
- 主要なLibraryは,Numpy,TensorFlow等

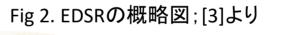
モデルの概略図(左: Bicubic、右: EDSR)



ResBlock ResBlock . . . Conv

Fig 1. Bicubicの概略図;

Bicubic interpolation - Wikiwandより



3. データについて

3. データについて

- 一般財団法人気象業務支援センターが提供する三十分大気解析GPV (http://www.jmbsc.or.jp/jp/online/file/f-online31100.html)を使用する
- 30分ごとの格子サイズ0.020度×0.025度(格子数 1261×1201)の風速,風向データ (UV)が含まれる
- モデルの入力データは,2時刻分の低解像度データ(1時間ごと)と3時刻分の高解像度 データ(30分ごと)とする
- 低解像度データは,高解像度データの5×5の平均を計算して作成

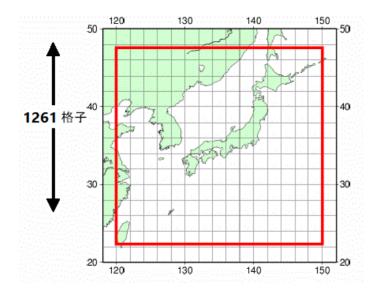


Fig 3. 三十分大気解析GPVの配信領域; 三十分大気解析GPV・毎時大気解析GPV (jmbsc.or.jp)より

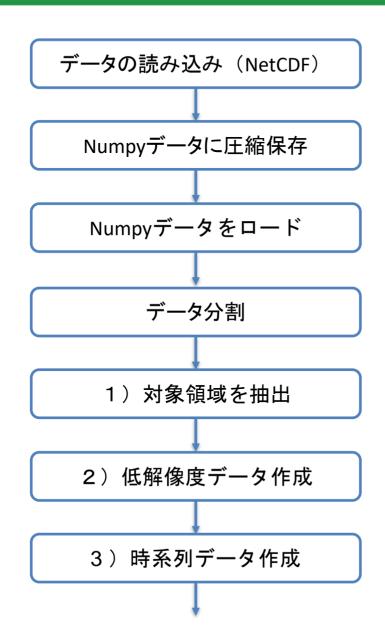
- 初めの70%のデータを学習データ,それ以降の20%のデータを検証データ,最後の10%のデータをテストデータとする
- 検証データは,モデルやハイパーパラメータのチューニングのために使用
- ・ テストデータは、最終的なモデルの評価に用いる

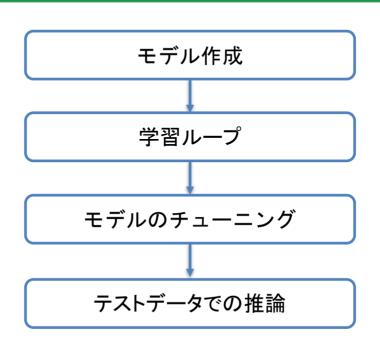
Table 1. データ分割の詳細

	Train	Validation	Test
Size	6046	1726	862
Period	2022-12-06 00:00:00	2023-04-11 00:00:00	2023-05-17 00:00:00
	~	~	~
	2023-04-10 23:30:00	2023-05-16 23:30:00	2023-06-03 23:30:00

4. 機械学習のフロー

機械学習の主な処理のフロー





5. 実験

入出力データ

- 陸奥湾,東京湾,富山湾,伊勢湾:入力(16×16) → 出力(80×80)(空間方向)
- 瀬戸内海(大阪湾を含む),九州(関門海峡,有明海,鹿児島湾を含む):
 入力(32×32) → 出力(160×160)

Input (32, 2, 32, 32, 2) = (batch size, time, height, width, u and v)

Model

Output

(32, 3, 160, 160, 2) = (batch size, time, height, width, u and v)

• 本実験では,主にBicubic,CNN,EDSRの3つのモデルを採用した

Table 2. モデルの説明

Model	Explanation
Bicubic(+Avg.)	Baseline.空間方向にはBicubic処理. 続いて,t2のみはt1とt3の平均をとる
CNN	[1]で使用されたモデルを本実験に沿うように改良(時間方向のパラメータ等を調整)
EDSR	EDSR[2,3]に対して,時間方向の処理を追加し,UVベクトルに対応できるように改良
EDSR+Avg.	上記のEDSRの出力に対して、t2は出力されたt1とt3の平均に置き換える

Table 3. 学習の設定

	CNN	EDSR
Epoch size	15	30
Batch size	32	32
Optimizer	Adam(TensorFlow Default)	Adam
Learning rate	0.001	0.001
Loss function	MSE(Mean Squared Error)	MSE

6. 実験結果

Table 4. Validation dataにおけるモデルの精度

	Tokyo
Bicubic(Baseline)	0.449
CNN	0.499
EDSR	0.340

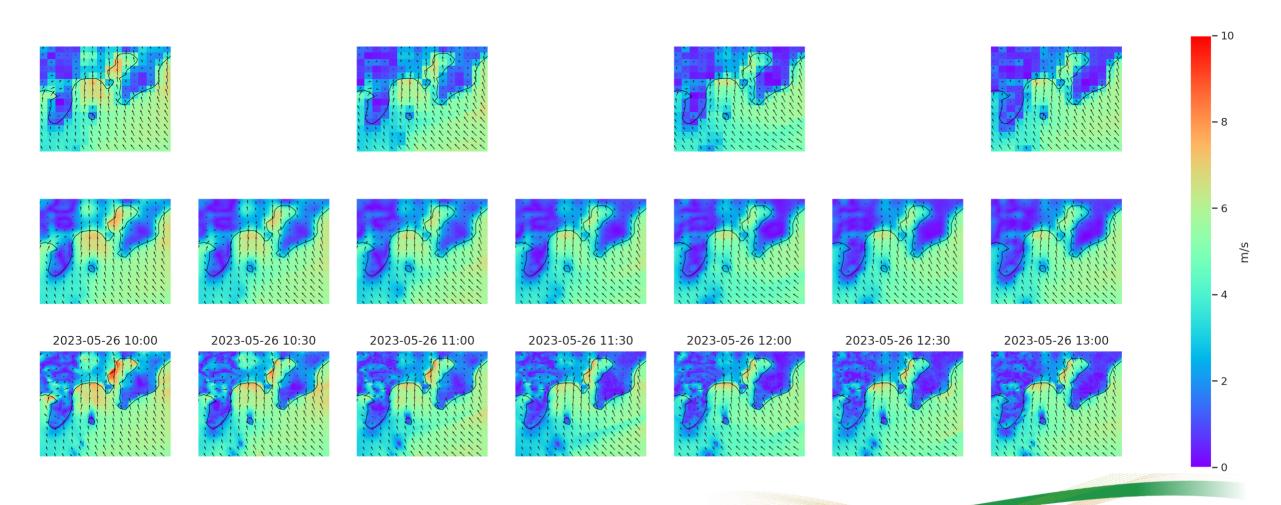
Table 5. Test dataにおけるモデルの精度

	Mutsu	Tokyo	Toyama	lse	Seto Inland Sea	Kyushu
Bicubic(Baseline)	0.500	0.415	0.351	0.398	0.377	0.394
EDSR	0.376	0.326	0.297	0.325	0.323	0.329

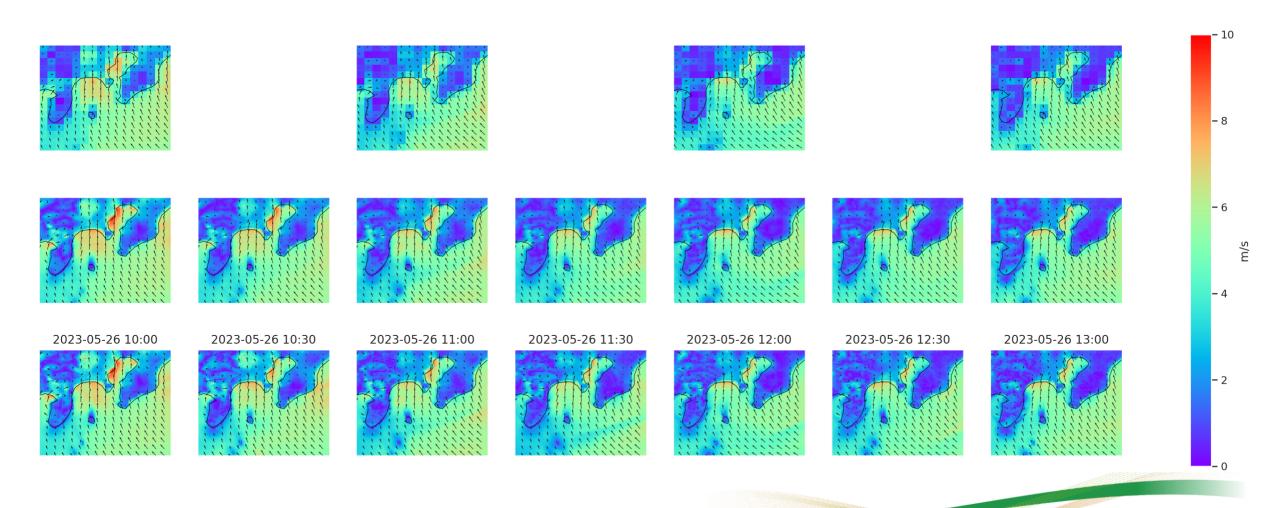
Table 6. Test dataにおける時間ごとのモデルの精度(t1,t2,t3はそれぞれ高解像度化する時間を表す)

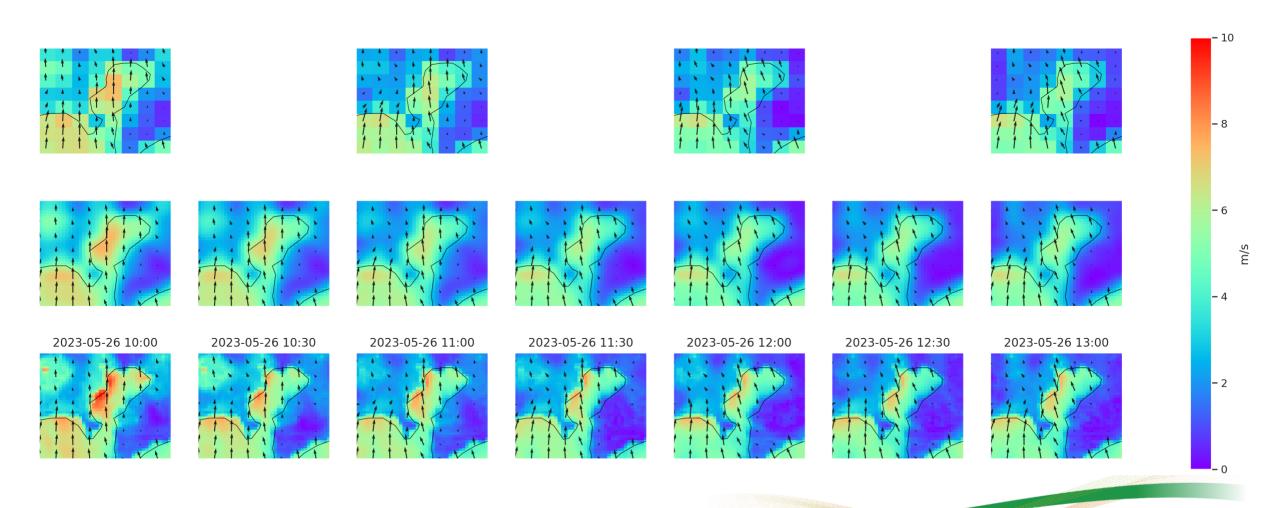
		Mutsu	Tokyo	Toyama	lse	Seto Inland Sea	Kyushu
Bicubic(Baseline)	t1	0.432	0.334	0.268	0.313	0.294	0.318
	t2	0.637	0.577	0.516	0.568	0.545	0.546
	t3	0.432	0.334	0.268	0.313	0.294	0.318
EDSR	t1	0.296	0.234	0.205	0.232	0.235	0.248
	t2	0.539	0.511	0.480	0.512	0.502	0.492
	t3	0.293	0.234	0.207	0.230	0.233	0.248
EDSR+Avg.	t2	0.540	0.514	0.481	0.519	0.510	0.499

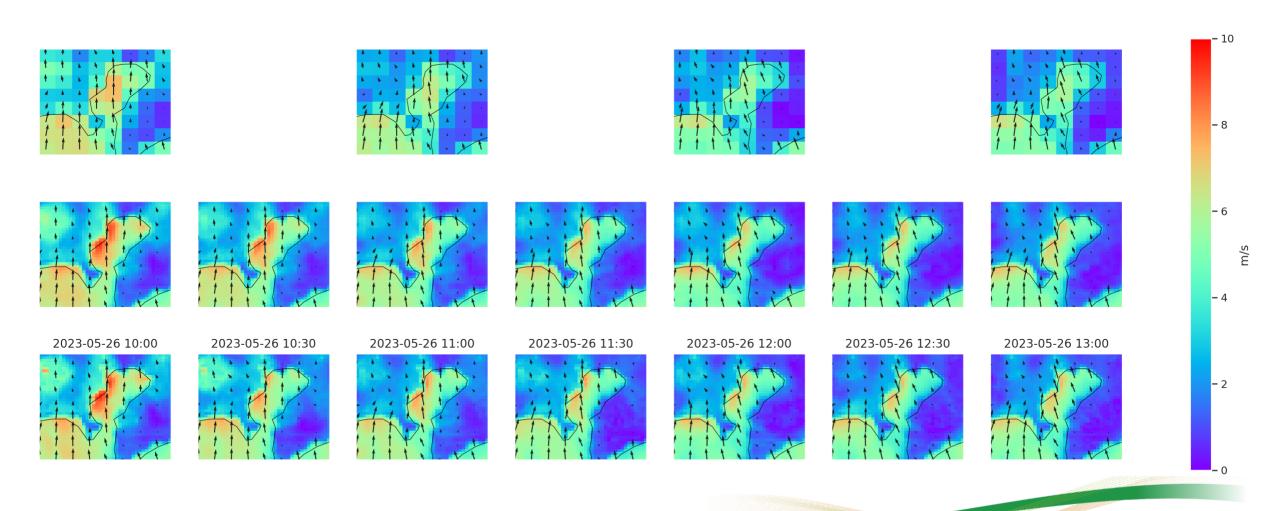
東京湾周辺の結果(Bicubic、上段:LR、中段:Output、下段:HR)



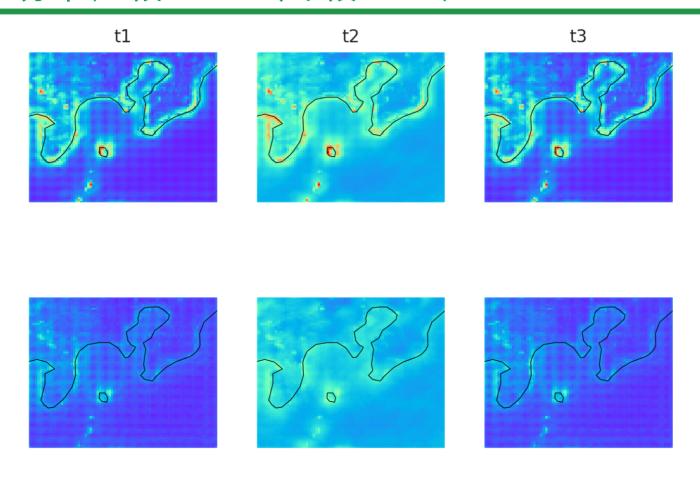
東京湾周辺の結果(EDSR)

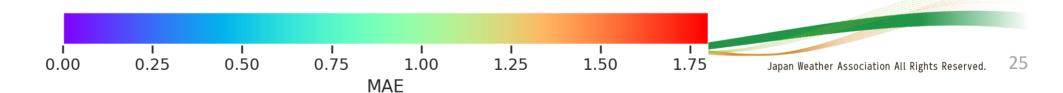






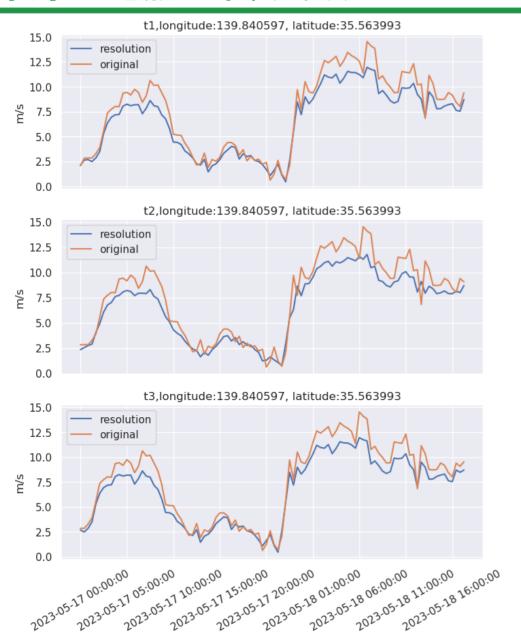
東京湾のMAEの分布(上段: Bicubic、下段: EDSR)

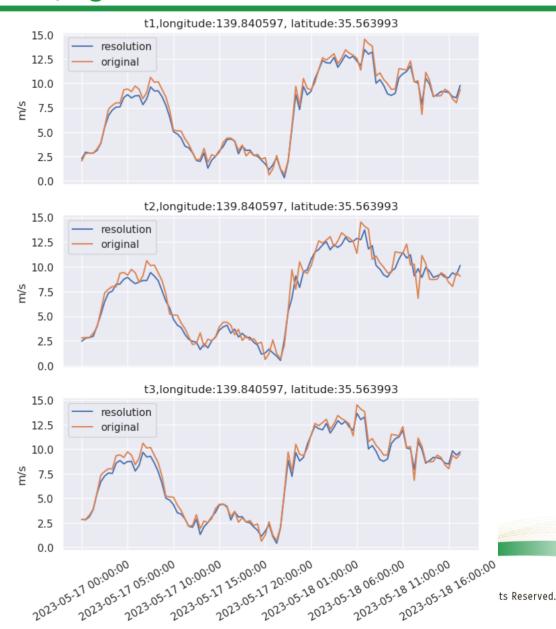




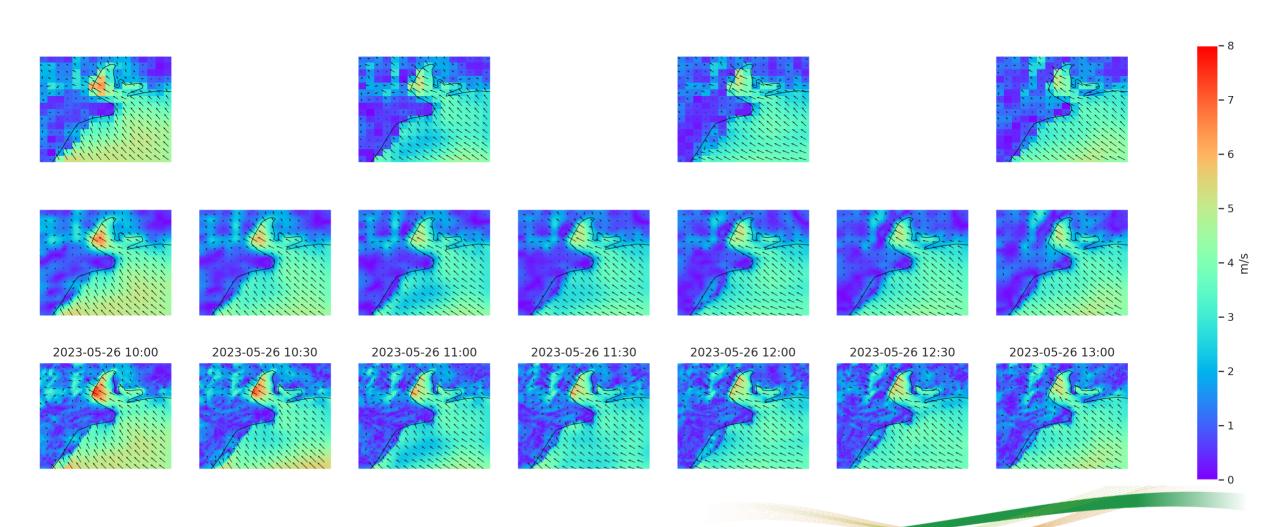
東京湾の1地点の時系列図(Left column: Bicubic, Right column: EDSR) Japan Weather Association

26



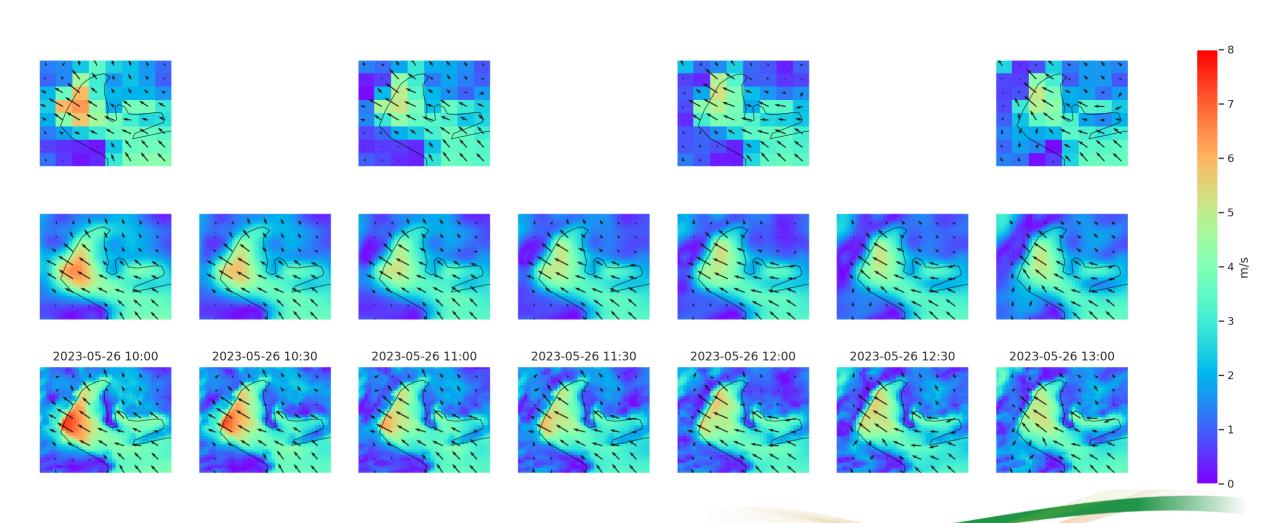


伊勢湾周辺の結果(Bicubic)

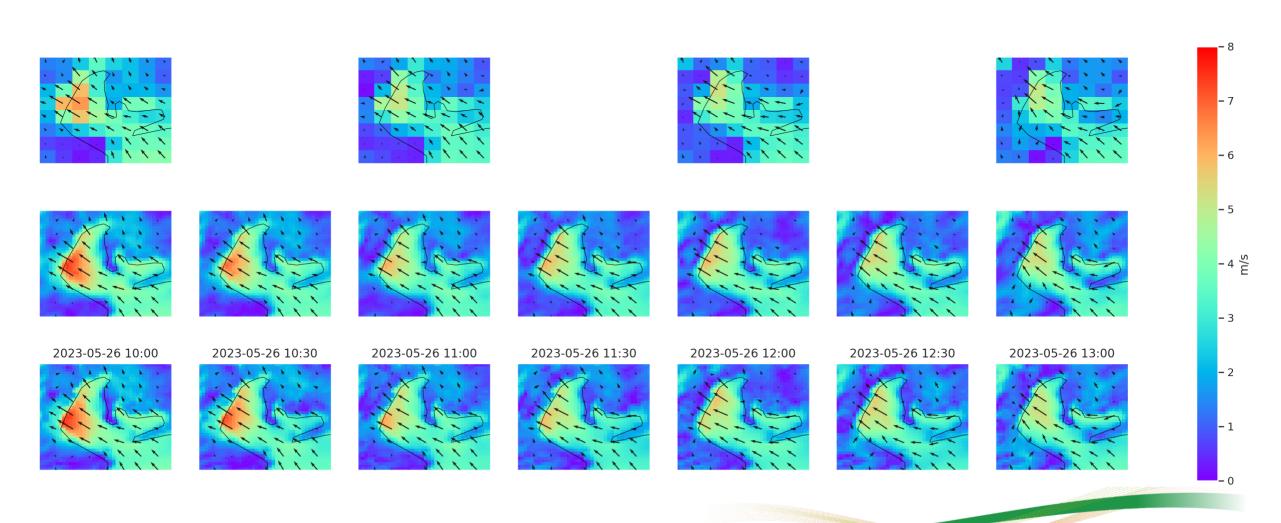


伊勢湾周辺の結果(EDSR)

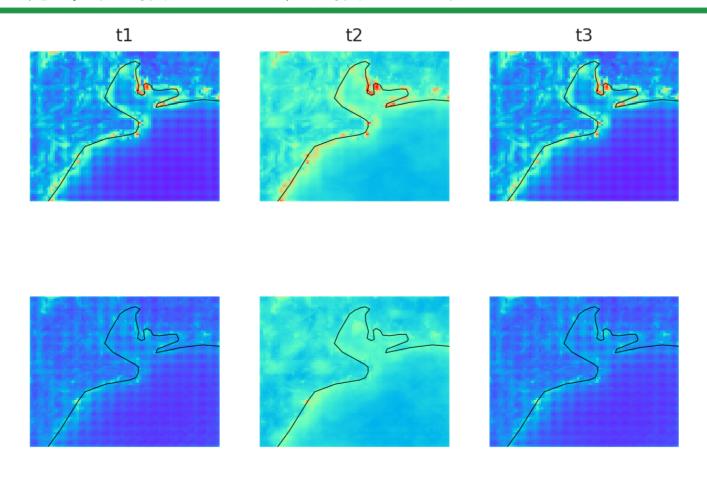
伊勢湾の結果(Bicubic)

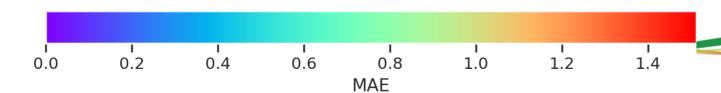


伊勢湾の結果(EDSR)

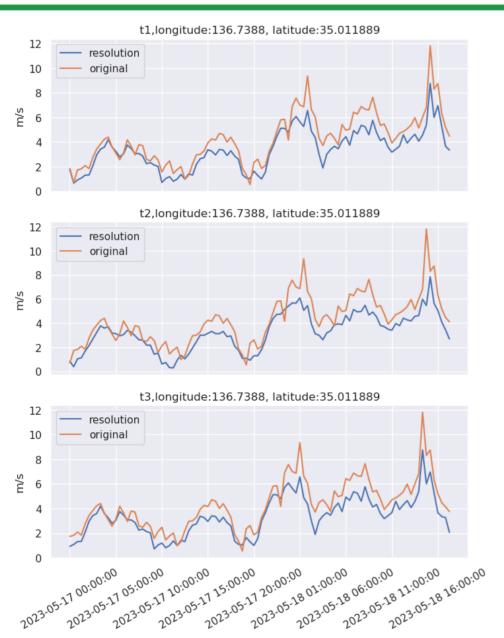


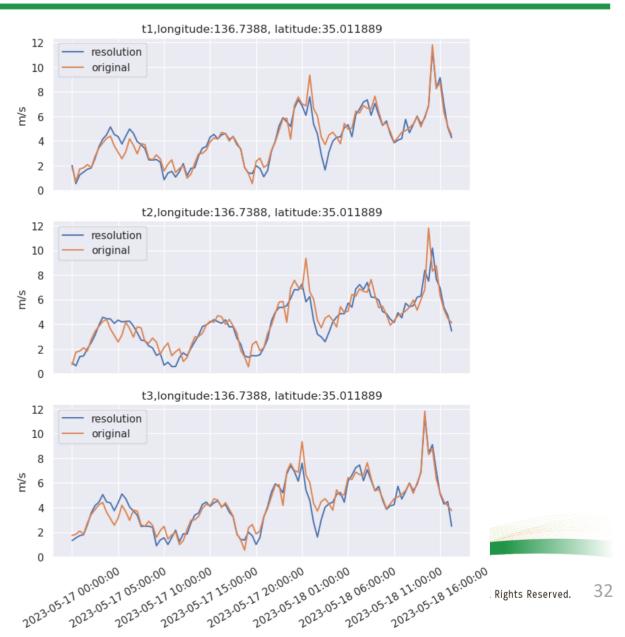
伊勢湾のMAEの分布(上段: Bicubic、下段: EDSR)



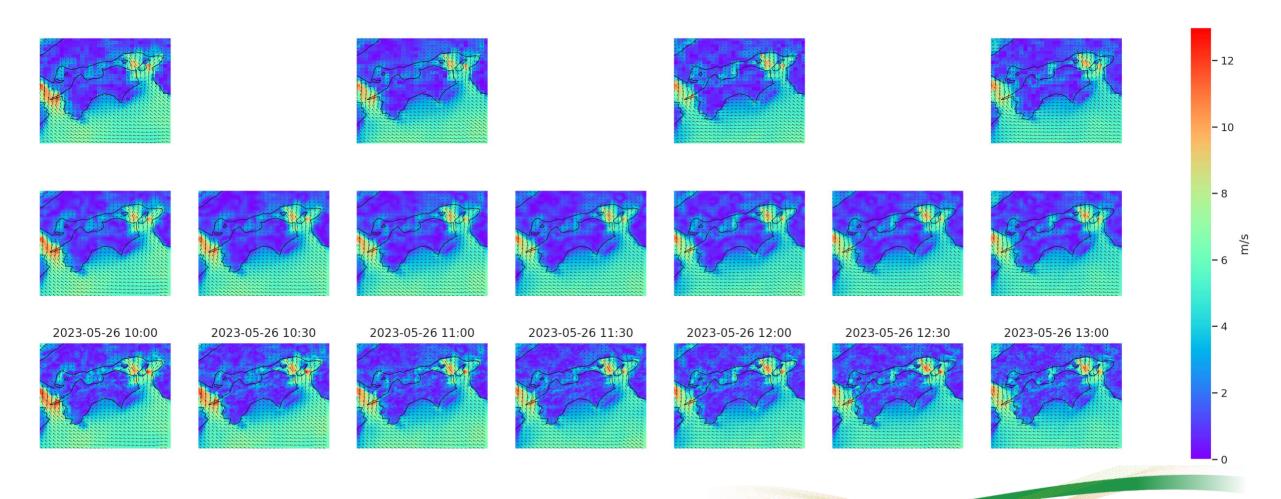


伊勢湾の1地点の時系列図(Bicubic, EDSR)

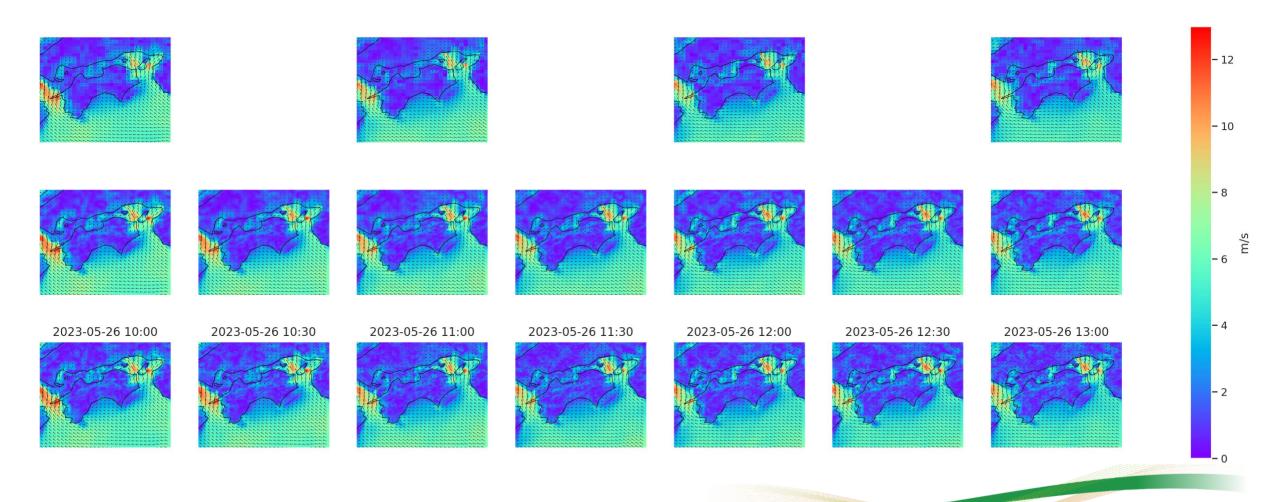


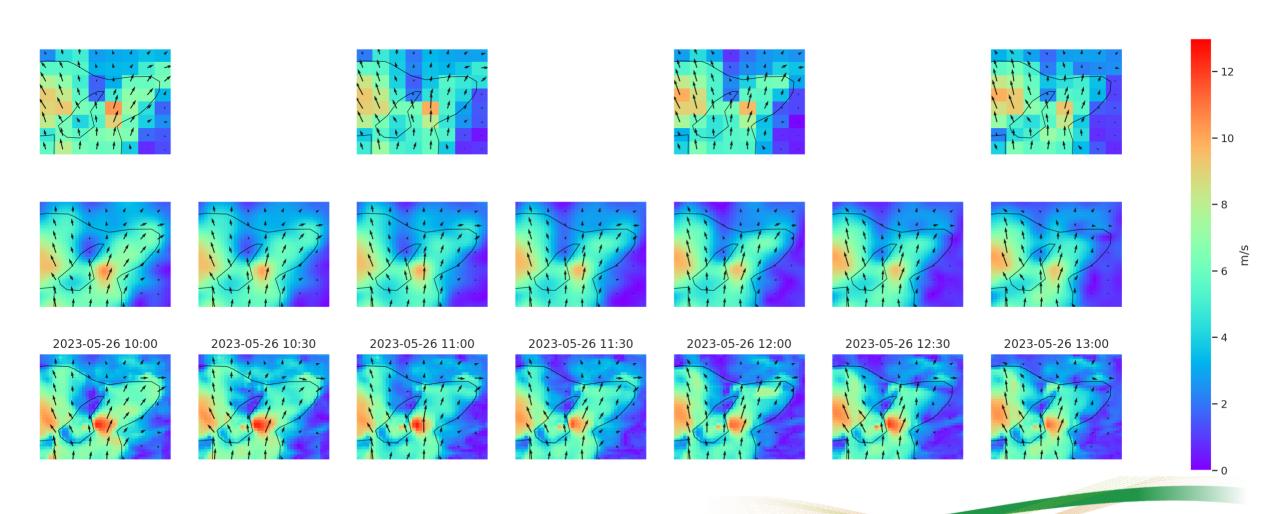


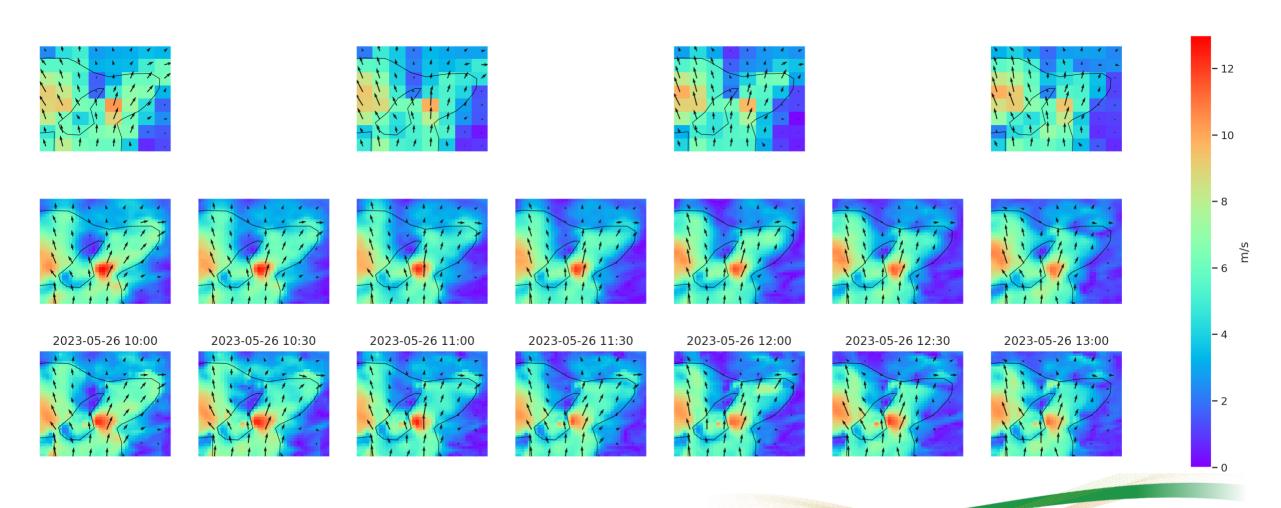
瀬戸内海の結果(Bicubic)



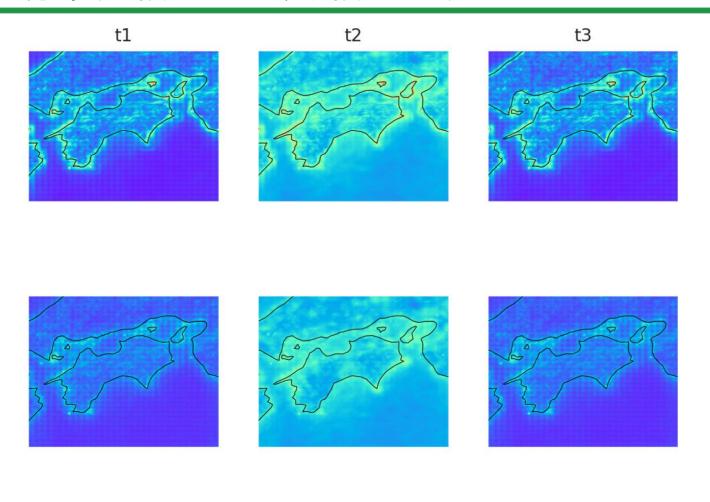
瀬戸内海の結果(EDSR)

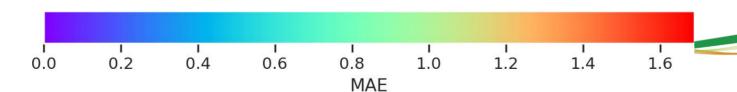




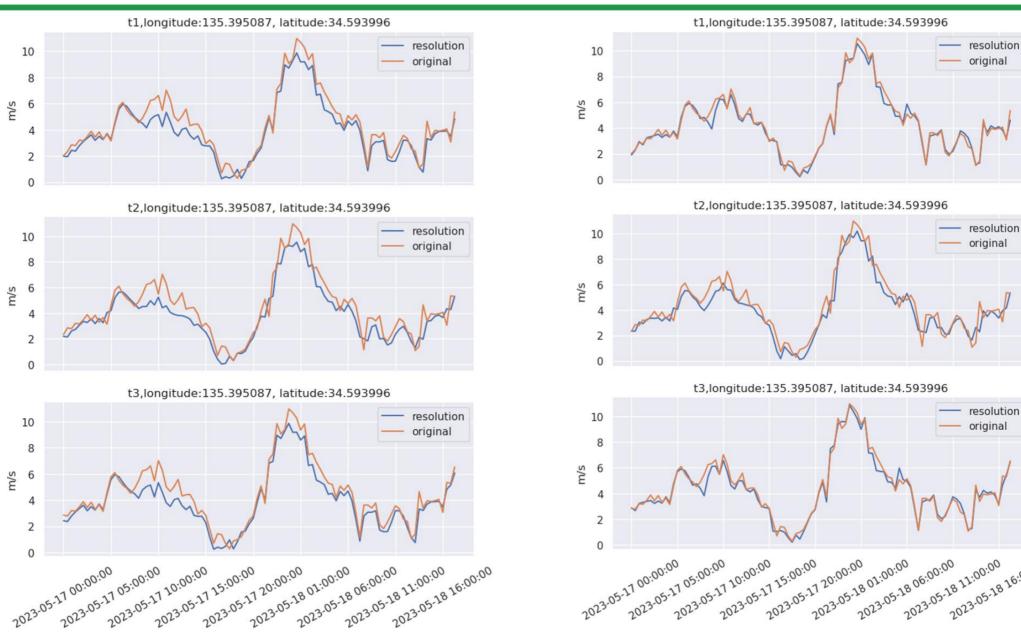


大阪湾のMAEの分布(上段:Bicubic、下段:EDSR)

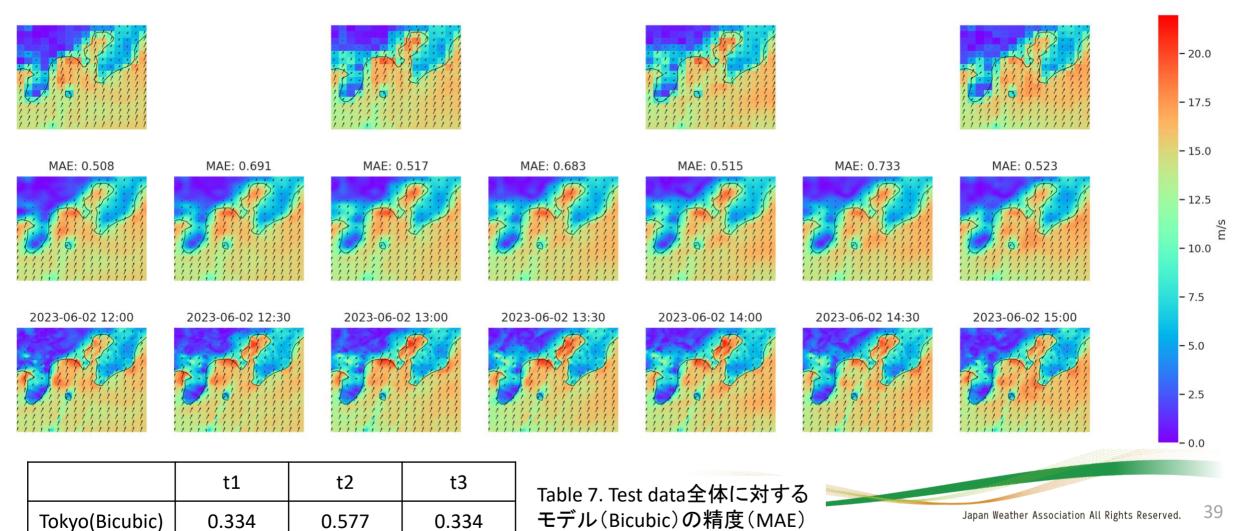




大阪湾の1地点の時系列図(Bicubic, EDSR)



hts Reserved.



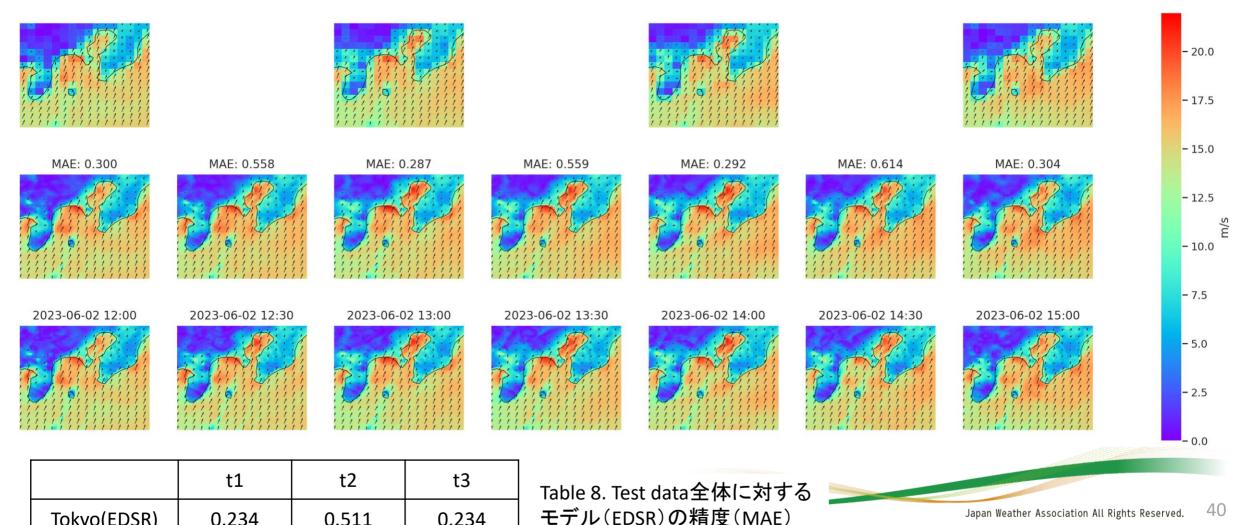
東京湾周辺の結果(EDSR、2023台風2号)

Tokyo(EDSR)

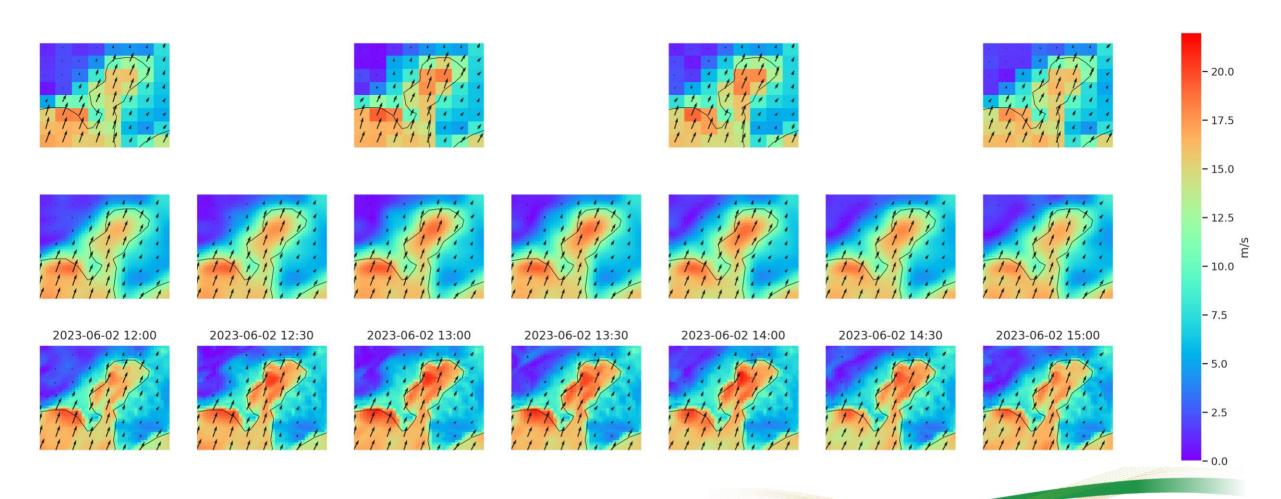
0.234

0.511

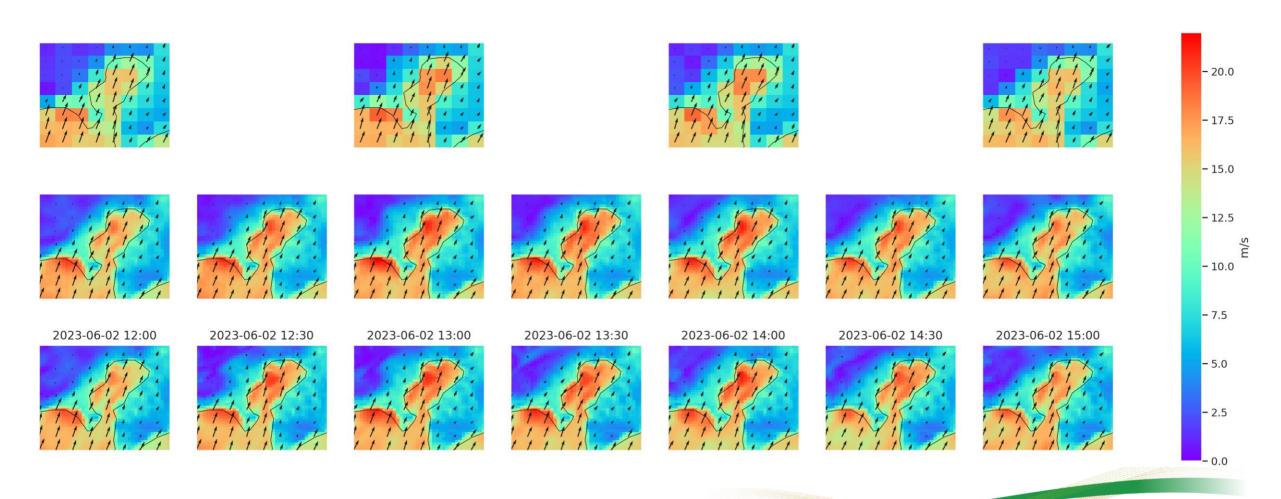
0.234



東京湾の結果(Bicubic、2023台風2号)



東京湾の結果(EDSR、2023台風2号)



7. 結論と課題

- 日本の主要な内湾の海上風を時空間方向に高解像度化し,精度を高めることができた
- 台風への適用においては、若干精度が下がる
- 空間方向に対して時間方向の高解像度化の精度が悪かった.時間内挿は,線形補間と 同程度の精度であった.
- これは,問題の性質上当然(t2は低解像度データが存在しない)でもあるが,時系列モデルを使用していないことにもよると考えられる
- 解決策としては,時間内挿は別モデル(ConvLSTM[4], EDVR(Video Super-Resolution)[5])にすることや入力データを時間方向に増やすなどが考えられる
- MAEの分布に多数の四角形が見られることに対しては、要因を特定するため、さらなる実験が必要である(他のモデルでも同様の現象が見られるか,ピクセル単位での評価からより全体を考慮する指標に損失関数[6]を変えるなど)

- [1] Masaya YAMAMOTO, Aritoshi MASUDA, DEVELOPMENT OF SPATIO-TEMPORAL DOWNSCALING METHOD FOR RAILNFALL PREDICTION USING DEEP LEARNING, 河川技術論文集, 第25巻, 2019年6月.
- [2] R. Kurinchi-Vendhan, B. Lutjens, R. Gupta, L. Werner, and D. Newman. WiSoSuper: Benchmarking Super-Resolution Methods on Wind and Solar Data, arXiv preprint arXiv:2109.08770, 2021.
- [3] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced deep residual networks for single image super-resolution, in CVPRW, 2017.
- [4] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang chun Woo. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, in NIPS, 2015.
- [5] X. Wang, K. C. Chan, K. Yu, C. Dong, and C. Change Loy. EDVR: Video Restoration with Enhanced Deformable Convolutional Networks, in CVPRW, 2019.
- [6] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks, in ECCVW, 2018.

インターンシップに参加した感想

- 気象を専門にする方々との関わりにより、AI以外の知見も深めることができた
- 専門的な知識が不足していてもDeep Learning等のAIにより、ある程度良い結果がでた
- AIの有用性を再認識した
- 特に気象データの扱い方について学んだ
- 気象データについての知識を現在の自身の研究にフィードバックしている